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Electronic continuum wavefunctions for the one-electron two-center system have been 
calculated for nuclear charges Z, = I .O, 1.0 < ZA < 2.0 (“near-symmetric” systems). 
Using scaling laws, the results for noninteger ZA can be applied to larger bare-nucleus 
systems. Representative examples of computed separation constants and phase shifts are 
presented. 

A. TNTRODUCTION 

Electronic continuum states for the two-center one-electron system have received 
little attention, although the problem is a separable one. Solutions for H,+ were 
computed by Bates et al. [l] in connection with photoionization of the molecule-ion. 
Cayford et al. [2] report a solution using the finite difference method. An incorrect 
solution for arbitrary charges has been reported by Greenland [3]. Ponomarev and 
Somov [4] have described a correct solution and present results for HeH2+ in 
particular. 

Here we present an alternative to the method of Ponomarev and Somov [4] which 
agrees with their results but not with those of Greenland [3]. We have used it to 
compute continuum wavefunctions for systems with nuclear charges Z, = +l.O, 
+l.O < Z, < 12.0 (using scaling laws, the results for nonintegral but rational 
(Z,/Z,) can be applied to larger bare-nucleus systems). Computation of these 
continuum states is needed for studies of direct impact ionization similar to those done 
earlier in this laboratory [5-71; we have also used them to study the problem of electron 
translation factor corrections in slow collisions in work reported elsewhere [8]. 

Where possible, we have omitted details since most features of the correct solutions 
are given by Ponomarev and Somov [4], but we have shown some interesting aspects 
of phase shift behavior in the figures. Copies of the FORTRAN IV computer algo- 
rithms used to generate solutions are available upon request. 

* Based on a portion of a thesis submitted by J. Rankin in partial fulfillment of requirements 
for the Ph.D. degree in Chemistry, University of Alberta, 1978. 
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B. SOLUTION 

For a single electron in the field of two Coulombic centers +Z,e, -+Z,e, the 
solution is separable in prolate spheroidal coordinates ($9, $)(l < 5 < co; 
--I <7<+1;0<4<27~)andmaybewritten 

Y = (2,rr)-1/2 X(f) S(q) exp(im+). (1) 

For positive energies E the “angular” and “radial” equations are, resp., 

d/d?j{(l - q2)dS/dq} + [p7j - c2v2 - m”/(l - T2) + AIS = 0 (2) 

and 

d/dl${@ - l)dX/&) + [qf + c?!J2 - m”/($ - 1) - A]X = 0, (3) 

where the parameters p, q, c2 are defined 

P = WB - Z,), q = WA + Zd, c2 = l R2/4; (4) 

R is the internuclear distance in a.u., E is the energy in Rydbergs, and we take c to be 
nonnegative. A and m are separation constants; in the united atom limit (R -+ 0), 
Eq. (2) tends to the equation for the associated Legendre function Pim’(?) with 
A = L(L + l), and Eq. (3) becomes the radial equation for the spherical Coulomb 
wavefunction [9]. 

1. Solution of Angular Equation 

Solutions to (2) are required which are regular in the interval - 1 < r) < + 1. 
Basing our approach on the formal analogy with the equation for E < 0, we write 

S(r) = ew--id C &“‘(4 

which leads to a three-term recursion relation for the dL’s, 

[(p + 2icl)(l - / m I)/(21 - l)] Q-, + [A - c2 - Z(1 + l)] dt 

+ ([p - 2ic(Z + l)](l + j m I + 1)/(21 + 3)) d,,, = 0, (6) 

with dl,,+l = 0. The eigenvalues A are real (as Ponomarev and Somov [4] point out, 
they depend only on absolute values of the complex coefficients in (6)) and can be 
determined rapidly by the usual techniques for codiagonal matrices. 

The expansion (5) is not a convenient representation of the corresponding wave- 
function; convergence is poor even for moderate values of c Ip], and evaluation of 



TWO-CENTER CONTINUUM WAVE FUNCTIONS 439 

matrix elements for even simple operators linking bound and continuum states is 
messy. We have chosen to represent the wavefunction as 

S(r)) = c 4e%) (7) 
Z=lml 

which yields a five-term recursion relation, 

c2[(f - j m l)(f - / m ( - 1)/(21 - 3)(21 - I)] d,‘-, - p[(l - I m I)/(21 - l)] 6, 

+ {[f(f + 1) - A] + C2[2Z(1 + 1) - 2m2 - 1]/(21 - 1)(2Z + 3)) di 

- AU + I m I + 1Yt21 + 311 dLl 

+ c2[(f + I m I + 2)(f + I m I + 1)/W + 5W + 3)l 4+2 = 0. (8) 

Given the eigenvalue A, the coefficients d; can be found using the inverse iteration 
technique described by Wilkinson [lo]. The coefficients $ are normalized so that 

s 

+1 
S2(~) dv = 1. (9) 

-1 

The form (7) has been used by Helfrich [ 111 to represent the angular parts of the 
bound state wavefunctions. 

2. Solution of Radial Equation 

We require the solution of Eq. (3) which is regular at e = 1; it has the asymptotic 
form 

Peg(() = (B/r) sin[kr + (q/2c) In kr + 61, (10) 

where r is the distance of the electron from the geometric center, B is a normalization 
constant and 6 is the phase shift; k = 2c/R (k2 = e), 

To obtain this solution we write 

at) = Kf - l)/(f + l)l’“““F(t) (11) 

and F(t) satisfies the differential equation 

($ - 1) m3 + 2(l m I + 0 ei3 + [c”P + 45 - A] F(t) = 0. (12) 

The solution Free(e) which is regular at c = 1 is generated as a series in (positive) 
powers of (6 - 1) (a four term recursion formula is obtained for the coefficients). This 
solution is continued numerically by integration of (12) with a variable-step Adams- 
Moulton-Bashforth predictor-corrector method, until a value of 5 suitable for 
matching to asymptotic solutions is reached. 
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The asymptotic solutions to (12) can be written 

F*(O = (t + 1)-l exp *+4 + WC) ln(t 

and if we write 

u’(!f) = 1 ~n*P/c(t + 111” 11 

+ 0) u*(8) (13) 

(14) 

the coefficients b,* satisfy a three-term recursion relation, 

c{n(n + I m I) - (q/4c2) T WW(2n + I m I)> & 

- {n(n + 1) - (q‘y4c2) + q + c2 - A 

F i[(q/2c)(2n + 1) - 2c(2n + j m I + l)]} b,’ & 4i(n + 1) bz,, = 0 (15) 

with bil = 0, b,* = 1. Evidently u-(c) = [a+(,$)]*. Equation (14) is an asymptotic 
expansion; for sufficiently large 5 it yields sufficiently accurate solutions J’*(& To 
determine the phase shift 6 we write 

F’fq) = D[eW’(f) + e-9-(()], 
(16) 

I-‘([) = D[e”V”(~) + e-V-‘([)], 

and determine 01. From Eqs. (13) and (16) it follows that 

where 

Xreg(O - V/(4 + 1)l sin[ct + (qPc) In 44 + 1) + 61, (17) 

6 = a - (q/2c) In c + rr/2 (18) 

(note that c = +kR, (q/2c) = (2, + Z,)/k). In the united atom limit, 6 tends to the 
appropriate Coulomb phase shift [9], 

6 ?+or uL - (L7~/2) + y In 2, (194 

where 

u, = Arg r(L + 1 - ir) Ugb) 

and 

y = (Z, + Z,)/d’” = (q/2c). (19c) 

The phase d reported by Ponomarev and Somov is related to our phase 6 (mod 27r) 
by 

A = 6 + @n-/2) - y In 2. 
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The phase shifts reported by Levy and Thorson [5b] for H,+ are incorrect; correct 
values are obtained by subtracting c = &kR from their quoted values (cf. also 
Ref. [ 121). 

The wavefunctions are normalized to include the density of continuum states, 
and this requires 

% = 2/(27r~R)~/~ = 2/R(rrk)li2. (20) 

3. Remarks 

Our method of solution differs in some ways from that used by Ponomarev and 
Somov [4]: (a) We expand the angular eigenvector S(r)) in associated Legendre 
functions (7), while they employ a power series in (1 + 7). The form (7) is more 
directly useful in impact ionization calculations, since it yields directly the required 
asymptotic unitary decomposition into spherical harmonics (Ref. [5a]). (b) We use the 
extended asymptotic expansions (13) (14) to represent the matching solutions via (16), 
and this leads to a significant saving in computer time since numerical integration 
need not be carried as far to obtain a phase shift of given accuracy. Ponomarev and 
Somov state that for a precision of 1 x lo-’ they require matching at 8:s such that 
c& = 50 / A - c2 - y2 / ; we find that in our case & such that cc”,, = 3y is 
sufficient to give phase shifts precise to better than 1 x 1O-6 in every case. This appears 
to be a significant saving in computational effort. 

Using an Amdahl 47OV/6 digital CPU computation of a single continuum partial 
wave state, for 12 values of R (1 to 12 a.u.) and 5 values of energy E, 60 solutions in all, 
requires 9.5 set CPU time. 

Greenland [3] proposes a solution for the continuum states which is not correct. 
In particular: (a) He attempts to determine the separation constant A by requiring 
that asymptotically solutions S(T) shall have angular momentum eigenstate character- 
istics. Assuming the constraints he imposes, it can be shown that the states S(q) are 
parity eigenstates regardless of the charge asymmetry, obviously a false conclusion. 
(b) He expands the radial solutions in Coulomb waves and attempts to determine the 
phase shifts from conditions related to normalization of the expansion coefficients. 
In view of similarities between the radial equation (3) and the radial equation for 
Coulomb wavefunctions, it at first seems that an expansion based on the latter would 
provide a useful representation of solutions to (3). However, we show in the Appendix 
that this is not the case. Greenland and Greiner [12] give a later discussion in terms 
of Coulomb wavefunctions, in which the errors in Greenland’s paper are noted. 

The method of Cayford et al. [2], which is based on finite difference methods, 
can be used to calculate continuum states using appropriate boundary conditions at a 
(previously chosen) fixed point (5 = to); however, the values of continuum energy 
then obtained cannot be specified in advance, and this is a significant disadvantage 
in computational tasks which require calculations at a given constant value of E. Our 
method and that of Ref. [4] provide direct results for arbitrarily specified E. 



442 RANKIN AND THORSON 

C. RESULTS 

We label the continuum states with energy E (in Rydbergs), united-atom-limit 
angular momentum quantum number L, and azimuthal quantum number m. 

Table I gives representative values for separation constants A and phase shifts 6 
in HeH2+; data shown are for E = 1.0 Ry, and states sg (L = m = 0), pa 
(L = 1, m = 0), and pr (L = 1, m = 1) for 0 < R < 12 a.u. In united atom limit 
the phase shifts all agree (mod 27~) with the appropriate Coulomb phase shifts (19). 

Figures I and 2 show separation constants A and phase shifts 6, resp., for the model 

TABLE I 

Separation Constants and Phase Shifts for HeH” 

SO wave 
.--. 

R A 6 

pu wave p7f wave 

A 8 A 

0.0 O.OOOOOO 0.32661 2.OOOOOO 1.42903 2.OOOOOO 1.42903 

0.5 -0.019726 0.21542 2.061212 1.48671 2.000083 1.39992 

1.0 -0.067583 0.08905 2.231426 1.54631 2.001287 1.33885 

1.5 -0.119657 -0.02076 2.480920 1.52845 2.006210 1.26945 

2.0 -0.154305 -0.22892 2.780038 1.47423 2.018430 1.19966 

2.5 -0.157431 -0.20910 3.106771 1.40952 2.041735 1.13187 

3.0 -0.121627 -0.29334 3.448244 1.3457 2.079508 1.06667 

3.5 -0.044246 -0.37280 3.800033 1.27934 2.134352 1.00411 

4.0 0.074055 -0.44815 4.164259 1.21740 2.207954 0.94408 

4.5 0.230295 -0.51974 4.547059 1.15752 2.301088 0.88642 

5.0 0.419874 -0.58781 4.956207 1.09926 2.413727 0.83100 

5.5 0.637180 -0.65248 5.399372 1.04218 2.545180 0.77770 

6.0 0.876168 -0.71384 5.882991 0.98597 2.694259 0.72643 

6.5 1.130917 -0.77200 6.411565 0.93045 2.859430 0.67709 

7.0 1.396101 -0.82707 6.987263 0.87558 3.038956 0.62962 

7.5 1.667318 -0.87921 7.609767 0.82142 3.231025 0.58394 

8.0 1.941226 -0.92858 8.276389 0.76813 3.433846 0.53999 

8.5 2.215513 -0.97539 8.982417 0.71591 3.645729 0.49768 

9.0 2.488734 - 1.01984 9.721666 0.66497 3.865132 0.45694 

9.5 2.760112 -1.06213 10.487144 0.61552 4.090694 0.41771 

10.0 3.029326 - 1.10245 11.271748 0.56773 4.321242 0.37990 

10.5 3.296346 -1.14098 12.068871 0.52174 4.555787 0.34345 

11.0 3.561303 -1.17788 12.872869 0.47758 4.793513 0.30828 

11.5 3.824407 -1.21327 13.679304 0.43529 5.033756 0.27432 

12.0 4.085888 - 1.24730 14.484988 0.39480 5.275984 0.24149 

6 

((6 = l.ORyand6isinunitsofr. 
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l- 

0 1 2 3 4 5 6 7 8 9 10 11 I2 

R (a.u.) + 

FIG. 1. Separation constants, A, vs R, for the model system 2~ = 1.2, 2, = 1.0, energy c = 
0.5 Ry, for the first six partial waves. 

\ PHASE SHIFTS Z,= 1.2 Z, ~1.0 ‘I 

-2lT 
I I I I I I I I I I 

0 1 2 3 4 5 6 7 8 9 10 11 12 

R (a.u.) + 

FIG. 2. Phase shifts, 8, vs R, for the model system ZA = 1.2, ZB = 1.0, energy l = 0.5 Ry. 
Note the ordering in groups at large R values (see text). 

system with (2,/Z,) = 1.2, at E = 0.5 Ry. The results may be applied directly to a 
real bare-nucleus system with (2: , 2;) integers, e.g., (6, 5) and (12, 10): simply scale 
all distances as (ZL)-‘, all energies as (ZL)2. 

Figure 3 depicts phase shifts for HeH2+ again, at E = 1.0, for the same states as in 
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Fig. 2. It is interesting to note the systematic interleaving and ordering of phase shifts 
in the large R region (when plotted mod(2?r) as shown) which appear in both these 
figures. They appear to be grouped according to the values of (L + 1 m I), with phase 
shifts decreasing as that index increases; within any group of given (f. + 1 m I), 
they are ordered by the value of L, with phase shifts decreasing as L increases, and 
members of a group never cross each other. This behavior seems to be quite general 
for all charge ratios and energies. 

PHASE SHIFTS Z,=20, Z, =l.O 

E'l.0 Ry 

i I I 

0 1 2 3 4 5 6 7 8 9 lo 11 12 

R (au.) - 

FIG. 3. Phase shifts, 6, vs R, for HeH2+, energy G = I .O Ry. 

Copies of the FORTRAN 1V programs used, and more detailed phase shift and 
separation constant data, are available upon request from this laboratory. 

APPENDIX: EXPANSION OF RADIAL SOLUTION IN COULOMB FUNCTIONS 

If we write the solution X(t) to Eq. (3) in the form 

ml = I(5 - lM5 + 1)l’“““G - 1>-‘J4% (A.11 

and change the independent variable to x = c([ - l), we find for v(x) the equation 

x(x + 2c){y" + (1 + q/cx)y} + 24 m I - I)(.$ - 34x1 + {c” - 4 - 4.Y = 0. 
64.2) 

Now, the spherical Coulomb wavefunctions satisfy the equation [9] 

FL + [I + 2y/x - L(L + 1)/x2] FL = 0, 64.3) 
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where 2y = (q/c) = 2(Z, + Z,)/ #. Suppose then that we write 

y(x) = f dLW (A.41 
L-0 

Upon substitution in Eq. (A.2), after some manipulations using the recursion 
relations obeyed by the Coulomb functions, we obtain a recursion relation for the 
coefficients (Ye , 

{2c(L - I m i)[y" + L21"2/(2L - 1)) O~L-~ + {I@ + 1) + C2 - 4 ~YL 
+ {2c(L + Im I + l)[y2 + (L + l)"l""/W + 3)) ~L+I = 0 (A.51 

with initial conditions 01-r = 0, CQ = 1. For very large L, the coefficients satisfy 
either 

OIL+1 N 4%) OIL (A.6a) 

or 

CyL ‘v -(c/L) CY-1 . (A.6b) 

In order to satisfy the initial conditions, we must choose the solution which 
behaves like (A.6a), i.e., the coefficients increase factorially, like those in a typical 
asymptotic expansion. Now, for small values of x, where the Coulomb functions can 
be represented by the power series form of the confluent hypergeometric function, 
the growth of these coefficients is offset by the factorially decreasing size of F,(x) 
and this solution has the general properties of a power series solution for y(x). 

For large x, where FL(x) has the form 

FL(x) - sin[x f y In 2x - Lx/2 + uJ, 

the series is useless for representing J(X) and indeed appears to diverge. 
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